Softmax classification extends logistic regression to multiclass problems. For two classes it reduces to logistic regression; for three or more classes it yields a valid probability over classes.
1. Softmax function #
Given scores (logits) $z=(z_1,\dots,z_K)$, the softmax converts them to a probability vector:
$$ \mathrm{softmax}(z_i) = \frac{\exp(z_i)}{\sum_{j=1}^{K} \exp(z_j)} \quad (i=1,\dots,K) $$
- Output is in [0,1]
- Sums to 1 across classes
- Can be interpreted as class probabilities
2. Model #
For input $x$, class-$k$ score is
$$ z_k = w_k^\top x + b_k $$
Softmax yields
$$ P(y=k\mid x) = \frac{\exp(w_k^\top x + b_k)}{\sum_{j=1}^{K} \exp(w_j^\top x + b_j)} $$
Training typically minimizes multinomial cross-entropy.
3. Try it in Python #
Use scikit-learn’s LogisticRegression
with multi_class="multinomial"
.
import matplotlib.pyplot as plt
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import make_classification
# synthetic 3-class data
X, y = make_classification(
n_samples=300,
n_features=2,
n_classes=3,
n_informative=2,
n_redundant=0,
n_clusters_per_class=1,
random_state=42
)
clf = LogisticRegression(multi_class="multinomial", solver="lbfgs")
clf.fit(X, y)
# decision regions
x_min, x_max = X[:,0].min()-1, X[:,0].max()+1
y_min, y_max = X[:,1].min()-1, X[:,1].max()+1
xx, yy = np.meshgrid(np.linspace(x_min, x_max, 200),
np.linspace(y_min, y_max, 200))
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]).reshape(xx.shape)
plt.figure(figsize=(8, 6))
plt.contourf(xx, yy, Z, alpha=0.3, cmap=plt.cm.coolwarm)
plt.scatter(X[:,0], X[:,1], c=y, edgecolor="k", cmap=plt.cm.coolwarm)
plt.title("Softmax classification (multinomial logistic)")
plt.show()
4. Notes and cautions #
- Outputs are probabilities, suitable for expected-utility decisions
- Linear decision boundaries in feature space
- Sensitive to feature scaling; add interactions/nonlinear transforms if needed
5. Typical uses #
- Text classification (multiclass topics)
- Image classification (digits 0–9, etc.)
- User intent (select one of several intents)
Summary #
- Softmax generalizes logistic regression to multiclass.
- Produces a valid probability distribution.
- In scikit-learn, set
multi_class="multinomial"
for the true softmax model. - Simple yet strong baseline for many multiclass tasks.