Least Squares

最終更新: 3 分で読めます このページを編集

Least squares finds the coefficients of a function that best fits pairs of observations (x_i, y_i) by minimizing the sum of squared residuals. We focus on the simplest case, a straight line y = wx + b, and walk through the intuition and a practical implementation.

Math is rendered with KaTeX. $\hat y$ denotes the model prediction and $\epsilon$ denotes noise.

Goal #

  • Learn the line $\hat y = wx + b$ that best fits the data.
  • “Best” means minimizing the sum of squared errors (SSE): $\displaystyle L(w,b) = \sum_{i=1}^n (y_i - (w x_i + b))^2$

Create a simple dataset #

We generate a noisy straight line and fix the random seed for reproducibility.

import numpy as np
import matplotlib.pyplot as plt
import japanize_matplotlib  # optional for Japanese labels

rng = np.random.RandomState(42)
n_samples = 200

# True line (slope 0.8, intercept 0.5) with noise
X = np.linspace(-10, 10, n_samples)
epsilon = rng.normal(loc=0.0, scale=1.0, size=n_samples)
y = 0.8 * X + 0.5 + epsilon

# Reshape to 2D for scikit-learn: (n_samples, 1)
X_2d = X.reshape(-1, 1)

plt.figure(figsize=(10, 5))
plt.scatter(X, y, marker="x", label="observations", c="orange")
plt.xlabel("$x$")
plt.ylabel("$y$")
plt.legend()
plt.show()

png

In scikit-learn, features are always a 2D array: rows are samples and columns are features. Use X.reshape(-1, 1) for a single feature.

Inspect the noise #

Let’s check the distribution of epsilon.

plt.figure(figsize=(10, 5))
plt.hist(epsilon, bins=30)
plt.xlabel("$\\epsilon$")
plt.ylabel("count")
plt.show()

png

Linear regression (least squares) with scikit-learn #

We use sklearn.linear_model.LinearRegression.

from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score

model = LinearRegression()  # fit_intercept=True by default
model.fit(X_2d, y)

print("slope w:", model.coef_[0])
print("intercept b:", model.intercept_)

y_pred = model.predict(X_2d)

# Metrics
mse = mean_squared_error(y, y_pred)
r2 = r2_score(y, y_pred)
print("MSE:", mse)
print("R^2:", r2)

# Plot
plt.figure(figsize=(10, 5))
plt.scatter(X, y, marker="x", label="observations", c="orange")
plt.plot(X, y_pred, label="fitted line", c="C0")
plt.xlabel("$x$")
plt.ylabel("$y$")
plt.legend()
plt.show()

png

Scaling is not required to solve ordinary least squares, but it helps with multivariate problems and regularization.

Closed-form solution (reference) #

For $\hat y = wx + b$, the minimizers are

  • $\displaystyle w = \frac{\operatorname{Cov}(x,y)}{\operatorname{Var}(x)}$
  • $\displaystyle b = \bar y - w,\bar x$

Verify with NumPy:

x_mean, y_mean = X.mean(), y.mean()
w_hat = ((X - x_mean) * (y - y_mean)).sum() / ((X - x_mean) ** 2).sum()
b_hat = y_mean - w_hat * x_mean
print(w_hat, b_hat)

Common pitfalls #

  • Array shapes: X should be (n_samples, n_features). Even for 1 feature, use reshape(-1, 1).
  • Target shape: y can be (n_samples,). (n,1) also works but mind broadcasting.
  • Intercept: default fit_intercept=True. If you centered features and target, False is fine.
  • Reproducibility: use a fixed seed via np.random.RandomState or np.random.default_rng.

Going further (multivariate) #

For multiple features, keep X as (n_samples, n_features). Pipelines let you combine preprocessing and the estimator.

from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler

X_multi = rng.normal(size=(n_samples, 2))
y_multi = 1.0 * X_multi[:, 0] - 2.0 * X_multi[:, 1] + 0.3 + rng.normal(size=n_samples)

pipe = make_pipeline(StandardScaler(), LinearRegression())
pipe.fit(X_multi, y_multi)

Code blocks are for learning purposes; figures are pre-rendered for the site.