Holt-Winters Method

Timeseries

Holt-Winters Method

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

from statsmodels.tsa.holtwinters import ExponentialSmoothing
from statsmodels.tsa.holtwinters import Holt
from statsmodels.tsa.holtwinters import SimpleExpSmoothing

Sample Data #

The data used is from Natural Gas Consumption (NATURALGAS). The unit of measurement is BCF (billion cubic feet).

data = {
    "value": {
        "2013-01-01": 2878.8,
        "2013-02-01": 2567.2,
        "2013-03-01": 2521.1,
        "2013-04-01": 1967.5,
        "2013-05-01": 1752.5,
        "2013-06-01": 1742.9,
        "2013-07-01": 1926.3,
        "2013-08-01": 1927.4,
        "2013-09-01": 1767.0,
        "2013-10-01": 1866.8,
        "2013-11-01": 2316.9,
        "2013-12-01": 2920.8,
        "2014-01-01": 3204.1,
        "2014-02-01": 2741.2,
        "2014-03-01": 2557.9,
        "2014-04-01": 1961.7,
        "2014-05-01": 1810.2,
        "2014-06-01": 1745.4,
        "2014-07-01": 1881.0,
        "2014-08-01": 1933.1,
        "2014-09-01": 1809.3,
        "2014-10-01": 1912.8,
        "2014-11-01": 2357.5,
        "2014-12-01": 2679.2,
        "2015-01-01": 3115.0,
        "2015-02-01": 2925.2,
        "2015-03-01": 2591.3,
        "2015-04-01": 2007.9,
        "2015-05-01": 1858.2,
        "2015-06-01": 1899.9,
        "2015-07-01": 2067.7,
        "2015-08-01": 2052.7,
        "2015-09-01": 1901.3,
        "2015-10-01": 1987.3,
        "2015-11-01": 2249.1,
        "2015-12-01": 2588.2,
        "2016-01-01": 3091.7,
        "2016-02-01": 2652.3,
        "2016-03-01": 2356.3,
        "2016-04-01": 2083.9,
        "2016-05-01": 1965.8,
        "2016-06-01": 2000.7,
        "2016-07-01": 2186.6,
        "2016-08-01": 2208.4,
        "2016-09-01": 1947.8,
        "2016-10-01": 1925.2,
        "2016-11-01": 2159.5,
        "2016-12-01": 2866.3,
        "2017-01-01": 2913.8,
        "2017-02-01": 2340.2,
        "2017-03-01": 2523.3,
        "2017-04-01": 1932.0,
        "2017-05-01": 1892.0,
        "2017-06-01": 1910.4,
        "2017-07-01": 2141.6,
        "2017-08-01": 2093.8,
        "2017-09-01": 1920.5,
        "2017-10-01": 2031.5,
        "2017-11-01": 2357.3,
        "2017-12-01": 3086.0,
        "2018-01-01": 3340.9,
        "2018-02-01": 2710.7,
        "2018-03-01": 2796.7,
        "2018-04-01": 2350.5,
        "2018-05-01": 2055.0,
        "2018-06-01": 2063.1,
        "2018-07-01": 2350.7,
        "2018-08-01": 2313.8,
        "2018-09-01": 2156.1,
        "2018-10-01": 2285.9,
        "2018-11-01": 2715.9,
        "2018-12-01": 2999.5,
        "2019-01-01": 3424.3,
        "2019-02-01": 3019.1,
        "2019-03-01": 2927.8,
        "2019-04-01": 2212.4,
        "2019-05-01": 2134.0,
        "2019-06-01": 2119.3,
        "2019-07-01": 2393.9,
        "2019-08-01": 2433.9,
        "2019-09-01": 2206.3,
        "2019-10-01": 2306.5,
        "2019-11-01": 2783.8,
        "2019-12-01": 3170.7,
        "2020-01-01": 3320.6,
        "2020-02-01": 3058.5,
        "2020-03-01": 2722.0,
        "2020-04-01": 2256.9,
        "2020-05-01": 2072.2,
        "2020-06-01": 2127.9,
        "2020-07-01": 2464.1,
        "2020-08-01": 2399.5,
        "2020-09-01": 2151.2,
        "2020-10-01": 2315.9,
        "2020-11-01": 2442.0,
        "2020-12-01": 3182.8,
        "2021-01-01": 3343.9,
        "2021-02-01": 3099.2,
        "2021-03-01": 2649.4,
        "2021-04-01": 2265.1,
        "2021-05-01": 2117.4,
        "2021-06-01": 2238.4,
        "2021-07-01": 2412.2,
        "2021-08-01": 2433.8,
        "2021-09-01": 2142.3,
        "2021-10-01": 2262.6,
        "2021-11-01": 2693.3,
        "2021-12-01": 3007.3,
        "2022-01-01": 3612.1,
        "2022-02-01": 3064.2,
        "2022-03-01": 2785.4,
        "2022-04-01": 2379.3,
        "2022-05-01": 2247.8,
        "2022-06-01": 2326.9,
        "2022-07-01": 2597.9,
        "2022-08-01": 2566.1,
        "2022-09-01": 2263.3,
    }
}

data = pd.DataFrame(data)
data.rename(columns={"value": "Natural Gas Consumption(BCF)"}, inplace=True)
data.index = pd.to_datetime(data.index)
data = data.asfreq("MS")
data.head()

Natural Gas Consumption(BCF)
2013-01-012878.8
2013-02-012567.2
2013-03-012521.1
2013-04-011967.5
2013-05-011752.5
plt.figure(figsize=(12, 6))
sns.lineplot(data=data)
plt.grid()
plt.show()

Sample Data figure

Data Splitting #

To evaluate the forecasting performance, the data is split, using the data from 2020 onwards for validation.

data_train = data[data.index < "2020-1-1"]
data_test = data[data.index >= "2020-1-1"]

plt.figure(figsize=(12, 6))
plt.plot(data_train.index, data_train.values, label="train", linewidth=2)
plt.plot(data_test.index, data_test.values, "-.", label="test")
plt.legend()
plt.grid()

To evaluate the forecasting performance, the data is split,… figure

Model Training and Forecasting #

Specify the parameters while referring to statsmodels.tsa.holtwinters.ExponentialSmoothing.

ses = SimpleExpSmoothing(data_train)
ses = ses.fit(smoothing_level=0.1)
ses_pred = ses.forecast(33)

holt = Holt(data_train)
holt = holt.fit(smoothing_level=0.1, smoothing_trend=0.2)
holt_pred = holt.forecast(33)

hw = ExponentialSmoothing(
    data_train, trend="additive", seasonal="add", seasonal_periods=12
)
hw = hw.fit()
hw_pred = hw.forecast(33)
plt.figure(figsize=(12, 6))
plt.plot(data_train.index, data_train.values, label="train", linewidth=2)
plt.plot(data_test.index, data_test.values, "-.", label="test")
plt.plot(ses_pred.index, ses_pred.values, "-.", label="prediction(ses)")
plt.plot(holt_pred.index, holt_pred.values, "-.", label="prediction(Holt)")
plt.plot(hw_pred.index, hw_pred.values, "-o", label="prediction(Holt-Winters)")
plt.legend()
plt.grid()

ExponentialSmoothing figure