- SVM aprende una frontera de decisiテウn que maximiza el margen entre clases, priorizando la capacidad de generalizaciテウn.
- El margen blando introduce variables de holgura; el parテ。metro \(C\) controla el equilibrio entre anchura del margen y errores permitidos.
- El truco del kernel reemplaza productos internos por funciones kernel, permitiendo fronteras no lineales sin expandir explテュcitamente las caracterテュsticas.
- La estandarizaciテウn de caracterテュsticas y la bテコsqueda de hiperparテ。metros (\(C\), \(\gamma\), etc.) son claves para un buen rendimiento.
Intuiciテウn #
Entre todas las hiperplanos que separan las clases, SVM elige el que deja el margen mテ。s ancho. Los puntos que tocan el margen son los vectores soporte: solo ellos determinan la frontera final, lo que aporta robustez ante ruido suave.
Formulaciテウn matemテ。tica #
Si los datos son separables linealmente, resolvemos
$$ \min_{\mathbf{w}, b} \ \frac{1}{2} \lVert \mathbf{w} \rVert_2^2 \quad \text{s.t.} \quad y_i(\mathbf{w}^\top \mathbf{x}_i + b) \ge 1. $$
En la prテ。ctica usamos la variante de margen blando con variables de holgura \(\xi_i \ge 0\):
$$ \min_{\mathbf{w}, b, \boldsymbol{\xi}} \ \frac{1}{2} \lVert \mathbf{w} \rVert_2^2 + C \sum_{i=1}^{n} \xi_i \quad \text{s.t.} \quad y_i(\mathbf{w}^\top \mathbf{x}_i + b) \ge 1 - \xi_i. $$
Sustituir los productos internos \(\mathbf{x}_i^\top \mathbf{x}_j\) por un kernel \(K(\mathbf{x}_i, \mathbf{x}_j)\) permite modelar fronteras no lineales.
Experimentos con Python #
El cテウdigo siguiente entrena SVM con kernel lineal y con kernel RBF sobre datos generados por make_moons, que no son separables linealmente. El kernel RBF captura la frontera curva con mayor precisiテウn.
from __future__ import annotations
import japanize_matplotlib
import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import make_moons
from sklearn.metrics import accuracy_score
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
def run_svm_demo(
n_samples: int = 400,
noise: float = 0.25,
random_state: int = 42,
title: str = "Regiテウn de decisiテウn del SVM con RBF",
xlabel: str = "caracterテュstica 1",
ylabel: str = "caracterテュstica 2",
) -> dict[str, float]:
"""Train linear and RBF SVMs and plot the RBF decision boundary."""
japanize_matplotlib.japanize()
X, y = make_moons(n_samples=n_samples, noise=noise, random_state=random_state)
linear_clf = make_pipeline(StandardScaler(), SVC(kernel="linear", C=1.0))
linear_clf.fit(X, y)
rbf_clf = make_pipeline(StandardScaler(), SVC(kernel="rbf", C=5.0, gamma=0.5))
rbf_clf.fit(X, y)
linear_acc = float(accuracy_score(y, linear_clf.predict(X)))
rbf_acc = float(accuracy_score(y, rbf_clf.predict(X)))
grid_x, grid_y = np.meshgrid(
np.linspace(X[:, 0].min() - 0.5, X[:, 0].max() + 0.5, 400),
np.linspace(X[:, 1].min() - 0.5, X[:, 1].max() + 0.5, 400),
)
grid = np.c_[grid_x.ravel(), grid_y.ravel()]
rbf_scores = rbf_clf.predict(grid).reshape(grid_x.shape)
fig, ax = plt.subplots(figsize=(6, 5))
ax.contourf(grid_x, grid_y, rbf_scores, alpha=0.2, cmap="coolwarm")
ax.scatter(X[:, 0], X[:, 1], c=y, cmap="coolwarm", edgecolor="k", s=30)
ax.set_title(title)
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
fig.tight_layout()
plt.show()
return {"linear_accuracy": linear_acc, "rbf_accuracy": rbf_acc}
metrics = run_svm_demo(
title="Regiテウn de decisiテウn del SVM con RBF",
xlabel="caracterテュstica 1",
ylabel="caracterテュstica 2",
)
print(f"Precisiテウn con kernel lineal: {metrics['linear_accuracy']:.3f}")
print(f"Precisiテウn con kernel RBF: {metrics['rbf_accuracy']:.3f}")

Referencias #
- Vapnik, V. (1998). Statistical Learning Theory. Wiley.
- Smola, A. J., & Schテカlkopf, B. (2004). A Tutorial on Support Vector Regression. Statistics and Computing, 14(3), 199窶・22.