- DBSCAN (Density-Based Spatial Clustering of Applications with Noise) identifica regiones densas como clústeres y deja el resto como ruido.
- Los parámetros
eps(radio de búsqueda) ymin_samples(vecinos mínimos) clasifican los puntos en núcleo, frontera o ruido. - A diferencia de k-means, no requiere fijar el número de clústeres y admite formas no convexas y ruido abundante.
- Un gráfico de distancias ordenadas ayuda a ajustar
eps; estandarizar variables hace que las distancias sean comparables.
Intuición #
DBSCAN forma clústeres conectando puntos que tienen suficientes vecinos dentro de eps.
- Núcleo: al menos
min_samplesvecinos en el radioeps. - Frontera: vecino de un punto núcleo, pero sin suficientes vecinos propios.
- Ruido: no es núcleo ni frontera.
Los puntos núcleo que se alcanzan mutuamente por cadenas de densidad forman un clúster. Los puntos frontera se adhieren al clúster más cercano y los restantes se etiquetan como ruido.
Formulación #
Para un punto \(x_i\) definimos la vecindad \(\varepsilon\)-radius como
$$ \mathcal{N}_\varepsilon(x_i) = {, x_j \in \mathcal{X} \mid \lVert x_i - x_j \rVert \le \varepsilon ,}, $$
y un punto es núcleo si
$$ |\mathcal{N}_\varepsilon(x_i)| \ge \texttt{min_samples}. $$
La conectividad por densidad agrupa los núcleos, los bordes se unen al clúster correspondiente y el resto queda como ruido.
Ejemplo en Python #
Agrupamos datos en forma de lunas y mostramos cuántos clústeres y puntos ruidosos detecta DBSCAN.
from __future__ import annotations
import matplotlib.pyplot as plt
import numpy as np
from numpy.typing import NDArray
from sklearn.cluster import DBSCAN
from sklearn.datasets import make_moons
from sklearn.preprocessing import StandardScaler
def ejecutar_demo_dbscan(
n_samples: int = 600,
noise: float = 0.08,
eps: float = 0.3,
min_samples: int = 10,
random_state: int = 0,
) -> dict[str, int]:
"""Aplica DBSCAN sobre datos lunares y devuelve conteos de cluster y ruido."""
features, _ = make_moons(
n_samples=n_samples,
noise=noise,
random_state=random_state,
)
features = StandardScaler().fit_transform(features)
model = DBSCAN(eps=eps, min_samples=min_samples)
labels = model.fit_predict(features)
unique_labels = sorted(np.unique(labels))
cluster_ids = [label for label in unique_labels if label != -1]
noise_count = int(np.sum(labels == -1))
core_mask = np.zeros(labels.shape[0], dtype=bool)
if hasattr(model, "core_sample_indices_"):
core_mask[model.core_sample_indices_] = True
fig, ax = plt.subplots(figsize=(6.2, 5.2))
palette = plt.cm.get_cmap("tab10", max(len(cluster_ids), 1))
for order, cluster_id in enumerate(cluster_ids):
mask = labels == cluster_id
colour = palette(order)
if np.any(mask & core_mask):
ax.scatter(
features[mask & core_mask, 0],
features[mask & core_mask, 1],
c=[colour],
s=36,
edgecolor="white",
linewidth=0.2,
label=f"cluster {cluster_id} (nucleo)",
)
if np.any(mask & ~core_mask):
ax.scatter(
features[mask & ~core_mask, 0],
features[mask & ~core_mask, 1],
c=[colour],
s=24,
edgecolor="white",
linewidth=0.2,
marker="o",
label=f"cluster {cluster_id} (frontera)",
)
if noise_count:
noise_mask = labels == -1
ax.scatter(
features[noise_mask, 0],
features[noise_mask, 1],
c="#9ca3af",
marker="x",
s=28,
linewidth=0.8,
label="ruido",
)
ax.set_title("DBSCAN clustering")
ax.set_xlabel("feature 1")
ax.set_ylabel("feature 2")
ax.grid(alpha=0.2)
ax.legend(loc="upper right", fontsize=9)
fig.tight_layout()
plt.show()
return {"n_clusters": len(cluster_ids), "n_noise": noise_count}
resultado = ejecutar_demo_dbscan()
print(f"Numero de clusters detectados: {resultado['n_clusters']}")
print(f"Numero de puntos de ruido: {resultado['n_noise']}")

Referencias #
- Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. KDD.
- Schubert, E., Sander, J., Ester, M., Kriegel, H.-P., & Xu, X. (2017). DBSCAN Revisited, Revisited. ACM Transactions on Database Systems.
- scikit-learn developers. (2024). Clustering. https://scikit-learn.org/stable/modules/clustering.html