Aclara prioridades con una matriz de riesgos

Visualize

Aclara prioridades con una matriz de riesgos

Creado: Última actualización: Tiempo de lectura: 1 min

En evaluaciones de riesgo, la prioridad suele decidirse por probabilidad e impacto. Una matriz en heatmap deja claros los temas urgentes.

import numpy as np
import matplotlib.pyplot as plt

levels = ["Bajo", "Algo bajo", "Medio", "Algo alto", "Alto"]
impact = ["Leve", "Limitado", "Moderado", "Grave", "Critico"]

risk_matrix = np.array(
    [
        [1, 1, 2, 3, 4],
        [1, 2, 2, 3, 4],
        [2, 2, 3, 4, 4],
        [2, 3, 4, 4, 5],
        [3, 4, 4, 5, 5],
    ]
)

fig, ax = plt.subplots(figsize=(5.8, 5.2))
im = ax.imshow(risk_matrix, cmap="YlOrRd", vmin=1, vmax=5)

ax.set_xticks(range(len(levels)), labels=levels)
ax.set_yticks(range(len(impact)), labels=impact)
ax.set_xlabel("Probabilidad")
ax.set_ylabel("Impacto")
ax.set_title("Matriz de riesgos")

for i in range(risk_matrix.shape[0]):
    for j in range(risk_matrix.shape[1]):
        risk = risk_matrix[i, j]
        color = "white" if risk >= 4 else "#0f172a"
        ax.text(j, i, risk, ha="center", va="center", color=color, fontsize=12)

cbar = fig.colorbar(im, ax=ax, fraction=0.046, pad=0.04)
cbar.set_label("Nivel de prioridad", rotation=270, labelpad=15)

ax.set_xticks(np.arange(-0.5, 5, 1), minor=True)
ax.set_yticks(np.arange(-0.5, 5, 1), minor=True)
ax.grid(which="minor", color="white", linewidth=1.5)
ax.tick_params(which="minor", bottom=False, left=False)

fig.tight_layout()

plt.show()

La matriz en heatmap deja claros los temas urgentes.

Consejos de lectura #

  • Las celdas rojas arriba a la derecha son la prioridad mas alta.
  • Define reglas como “solo monitoreo” para la zona de bajo riesgo.
  • Numerar celdas facilita vincular tickets o tablas detalladas.