- Naive Bayes mengasumsikan fitur saling independen secara kondisional dan menggabungkan prior dengan likelihood menggunakan teorema Bayes.
- Pelatihan dan inferensinya sangat cepat, menjadikannya baseline kuat untuk data berdimensi tinggi dan jarang seperti teks atau deteksi spam.
- Pelapisan Laplace dan fitur TF-IDF membantu menghadapi kata yang belum pernah muncul serta ketimpangan frekuensi.
- Jika asumsi independensi terlalu kuat, gunakan seleksi fitur atau kombinasikan Naive Bayes dengan model lain.
Intuisi #
Teorema Bayes menyatakan bahwa “prior × likelihood → posterior”. Jika fitur independen secara kondisional, likelihood dapat dipisah menjadi hasil kali probabilitas per fitur. Naive Bayes memanfaatkan pendekatan ini sehingga tetap stabil meski data latih sedikit.
Formulasi matematis #
Untuk kelas \(y\) dan vektor fitur \(\mathbf{x} = (x_1, \ldots, x_d)\),
$$ P(y \mid \mathbf{x}) \propto P(y) \prod_{j=1}^{d} P(x_j \mid y). $$
Model likelihood berbeda cocok untuk jenis data berbeda: multinomial untuk frekuensi kata, bernoulli untuk hadir/tidak hadir, dan gaussian untuk nilai kontinu.
Eksperimen dengan Python #
Contoh berikut melatih Naive Bayes multinomial pada subset data 20 Newsgroups dengan fitur TF-IDF. Walaupun jumlah fiturnya besar, pelatihan tetap cepat dan laporan klasifikasi merangkum performanya.
from __future__ import annotations
import japanize_matplotlib
import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import make_classification
from sklearn.metrics import accuracy_score, confusion_matrix
from sklearn.naive_bayes import GaussianNB
def run_naive_bayes_demo(
n_samples: int = 600,
n_classes: int = 3,
random_state: int = 0,
title: str = "Wilayah keputusan Naive Bayes Gaussian",
xlabel: str = "fitur 1",
ylabel: str = "fitur 2",
) -> dict[str, float]:
"""Train Gaussian Naive Bayes on synthetic data and plot decision regions."""
japanize_matplotlib.japanize()
X, y = make_classification(
n_samples=n_samples,
n_features=2,
n_informative=2,
n_redundant=0,
n_clusters_per_class=1,
n_classes=n_classes,
random_state=random_state,
)
clf = GaussianNB()
clf.fit(X, y)
accuracy = float(accuracy_score(y, clf.predict(X)))
conf = confusion_matrix(y, clf.predict(X))
x_min, x_max = X[:, 0].min() - 1.0, X[:, 0].max() + 1.0
y_min, y_max = X[:, 1].min() - 1.0, X[:, 1].max() + 1.0
grid_x, grid_y = np.meshgrid(np.linspace(x_min, x_max, 400), np.linspace(y_min, y_max, 400))
grid = np.c_[grid_x.ravel(), grid_y.ravel()]
preds = clf.predict(grid).reshape(grid_x.shape)
fig, ax = plt.subplots(figsize=(7, 6))
ax.contourf(grid_x, grid_y, preds, alpha=0.25, cmap="coolwarm", levels=np.arange(-0.5, n_classes + 0.5, 1))
ax.scatter(X[:, 0], X[:, 1], c=y, cmap="coolwarm", edgecolor="k", s=25)
ax.set_title(title)
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
fig.tight_layout()
plt.show()
return {"accuracy": accuracy, "confusion": conf}
metrics = run_naive_bayes_demo(
title="Wilayah keputusan Naive Bayes Gaussian",
xlabel="fitur 1",
ylabel="fitur 2",
)
print(f"Akurasi pelatihan: {metrics['accuracy']:.3f}")
print("Matriks kebingungan:")
print(metrics['confusion'])
Referensi #
- Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to Information Retrieval. Cambridge University Press.
- Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. MIT Press.