まとめ
- DBSCAN (Density-Based Spatial Clustering of Applications with Noise) menganggap area padat sebagai klaster dan area renggang sebagai noise.
- Dua parameter,
eps(radius pencarian) danmin_samples(jumlah tetangga minimal), membedakan titik inti, batas, dan noise. - Tidak perlu menentukan jumlah klaster di awal dan cocok untuk bentuk klaster yang tidak konveks maupun data dengan noise.
- Grafik jarak terurut membantu memilih
eps, sementara standardisasi fitur menjaga skala jarak tetap konsisten.
Intuisi #
DBSCAN menilai setiap titik berdasarkan banyaknya tetangga di radius eps.
- Titik inti: memiliki sedikitnya
min_samplestetangga dalam radiuseps. - Titik batas: berada di sekitar titik inti tetapi tidak memenuhi syarat tetangga.
- Noise: bukan inti maupun batas.
Titik inti yang saling terhubung karena kepadatan membentuk suatu klaster. Titik batas menempel pada klaster terdekat, sedangkan titik tersisa diberi label noise.
Rumusan #
Untuk titik \(x_i\), tetangga \(\varepsilon\)-radius didefinisikan sebagai
$$ \mathcal{N}_\varepsilon(x_i) = {, x_j \in \mathcal{X} \mid \lVert x_i - x_j \rVert \le \varepsilon ,}. $$
Seorang titik menjadi inti bila
$$ |\mathcal{N}_\varepsilon(x_i)| \ge \texttt{min_samples}. $$
Konektivitas kepadatan mengelompokkan titik inti, titik batas mengikuti klaster terkait, dan sisanya tetap sebagai noise.
Demonstrasi Python #
Kita terapkan DBSCAN pada data berbentuk bulan sabit, lalu hitung jumlah klaster dan titik noise.
from __future__ import annotations
import matplotlib.pyplot as plt
import numpy as np
from numpy.typing import NDArray
from sklearn.cluster import DBSCAN
from sklearn.datasets import make_moons
from sklearn.preprocessing import StandardScaler
def jalankan_demo_dbscan(
n_samples: int = 600,
noise: float = 0.08,
eps: float = 0.3,
min_samples: int = 10,
random_state: int = 0,
) -> dict[str, int]:
"""Menjalankan DBSCAN pada data bulan sabit dan mengembalikan jumlah klaster serta noise."""
features, _ = make_moons(
n_samples=n_samples,
noise=noise,
random_state=random_state,
)
features = StandardScaler().fit_transform(features)
model = DBSCAN(eps=eps, min_samples=min_samples)
labels = model.fit_predict(features)
unique_labels = sorted(np.unique(labels))
cluster_ids = [label for label in unique_labels if label != -1]
noise_count = int(np.sum(labels == -1))
core_mask = np.zeros(labels.shape[0], dtype=bool)
if hasattr(model, "core_sample_indices_"):
core_mask[model.core_sample_indices_] = True
fig, ax = plt.subplots(figsize=(6.2, 5.2))
palette = plt.cm.get_cmap("tab10", max(len(cluster_ids), 1))
for order, cluster_id in enumerate(cluster_ids):
mask = labels == cluster_id
colour = palette(order)
if np.any(mask & core_mask):
ax.scatter(
features[mask & core_mask, 0],
features[mask & core_mask, 1],
c=[colour],
s=36,
edgecolor="white",
linewidth=0.2,
label=f"cluster {cluster_id} (inti)",
)
if np.any(mask & ~core_mask):
ax.scatter(
features[mask & ~core_mask, 0],
features[mask & ~core_mask, 1],
c=[colour],
s=24,
edgecolor="white",
linewidth=0.2,
marker="o",
label=f"cluster {cluster_id} (batas)",
)
if noise_count:
noise_mask = labels == -1
ax.scatter(
features[noise_mask, 0],
features[noise_mask, 1],
c="#9ca3af",
marker="x",
s=28,
linewidth=0.8,
label="noise",
)
ax.set_title("Clustering DBSCAN")
ax.set_xlabel("fitur 1")
ax.set_ylabel("fitur 2")
ax.grid(alpha=0.2)
ax.legend(loc="upper right", fontsize=9)
fig.tight_layout()
plt.show()
return {"n_clusters": len(cluster_ids), "n_noise": noise_count}
hasil = jalankan_demo_dbscan()
print(f"Jumlah klaster yang ditemukan: {hasil['n_clusters']}")
print(f"Jumlah titik noise: {hasil['n_noise']}")

Referensi #
- Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. KDD.
- Schubert, E., Sander, J., Ester, M., Kriegel, H.-P., & Xu, X. (2017). DBSCAN Revisited, Revisited. ACM Transactions on Database Systems.
- scikit-learn developers. (2024). Clustering. https://scikit-learn.org/stable/modules/clustering.html