Untuk melengkapi data dari titik-titik observasi yang tidak beraturan, kita dapat menggunakan fungsi scipy.interpolate.griddata
.
Referensi: Scattered data interpolation (griddata)
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.pyplot as plt
import japanize_matplotlib
import seaborn as sns
from scipy.interpolate import griddata
def func(x, y):
return (x - 0.5) ** 2 + (y - 0.5) ** 2 + np.sin((x - 0.5) ** 2)
grid_x, grid_y = np.meshgrid(
np.linspace(0, 1, 100), np.linspace(0, 1, 100), indexing="ij"
)
Ketika jumlah data meningkat, pelengkapan menjadi lebih akurat. Namun, metode tetangga terdekat, karena sifatnya, menghasilkan pelengkapan yang menyerupai pola ubin.
rng = np.random.default_rng()
for points_num in [10, 50, 100, 1000]:
points = rng.random((points_num, 2))
values = func(points[:, 0], points[:, 1])
grid_z0 = griddata(points, values, (grid_x, grid_y), method="nearest")
grid_z1 = griddata(points, values, (grid_x, grid_y), method="linear")
grid_z2 = griddata(points, values, (grid_x, grid_y), method="cubic")
plt.suptitle(f"Jumlah Data yang Diamati = {points_num}", fontsize=22)
plt.subplot(221)
sns.heatmap(func(grid_x, grid_y).T, cmap="BrBG")
plt.plot(points[:, 0], points[:, 1], "k.", ms=1) # data
plt.title("Original")
plt.subplot(222)
sns.heatmap(grid_z0.T, cmap="BrBG")
plt.title("Nearest")
plt.subplot(223)
sns.heatmap(grid_z1.T, cmap="BrBG")
plt.title("Linear")
plt.subplot(224)
sns.heatmap(grid_z2.T, cmap="BrBG")
plt.title("Cubic")
plt.gcf().set_size_inches(6, 6)
plt.tight_layout()
plt.show()