Quando a sazonalidade e grande e o espaco e curto, o horizon chart dobra as faixas para compactar. A amplitude vira intensidade de cor.
import numpy as np
import matplotlib.pyplot as plt
x = np.arange(0, 48)
baseline = 120 + 30 * np.sin(2 * np.pi * x / 12)
trend = 0.6 * x
rng = np.random.default_rng(7)
series = baseline + trend + rng.normal(0, 8, size=x.size)
centered = series - series.mean()
band = 20
levels = 3
palette_pos = ["#bae6fd", "#38bdf8", "#0ea5e9"]
palette_neg = ["#fecaca", "#f87171", "#ef4444"]
fig, ax = plt.subplots(figsize=(6.2, 3.6))
for level in range(levels):
upper = np.clip(centered - level * band, 0, band)
if np.any(upper > 0):
ax.fill_between(
x,
level * band,
level * band + upper,
color=palette_pos[level],
step="mid",
)
lower = np.clip(-centered - level * band, 0, band)
if np.any(lower > 0):
ax.fill_between(
x,
-(level * band + lower),
-level * band,
color=palette_neg[level],
step="mid",
)
ax.axhline(0, color="#475569", linewidth=1)
positions = range(0, 48, 6)
ax.set_xticks(positions, labels=[f"Mes {idx + 1}" for idx, _ in enumerate(positions)])
ax.set_yticks([])
ax.set_title("Sessoes semanais (desvio do baseline)")
ax.set_xlabel("Semana")
ax.spines[["top", "right", "left"]].set_visible(False)
fig.tight_layout()
plt.show()

Dicas de leitura #
- Quanto mais escuro, maior o desvio; facilita encontrar picos.
- Abaixo de zero indica desvio negativo; cores quentes destacam quedas.
- Colocar varias series lado a lado ajuda a comparar padroes sazonais.