AR Process
AR models are also known as autoregressive models.
As the name autoregressive implies, it refers to a stochastic process in which the output of the model at time t depends on its own output before time t.
import statsmodels.api as sm
import numpy as np
import matplotlib.pyplot as plt
import japanize_matplotlib
Create data for AR process
Prepare functions to generate data
def create_ARdata(phis=[0.1], N=500, init=1, c=1, sigma=0.3):
"""Generating AR process data"""
print(f"==AR({len(phis)}), #data={N}==")
data = np.zeros(N)
data[0] = init + np.random.normal(0, sigma)
for t in range(2, N):
res = c + np.random.normal(0, sigma)
for j, phi_j in enumerate(phis):
res += phi_j * data[t - j - 1]
data[t] = res
return data
φ < 1
plt.figure(figsize=(12, 6))
phis = [0.1]
ar1_1 = create_ARdata(phis=phis)
plt.plot(ar1_1)
plt.show()
==AR(1), #data=500==
φ = 1
plt.figure(figsize=(12, 6))
phis = [1]
ar1_2 = create_ARdata(phis=phis)
plt.plot(ar1_2)
plt.show()
==AR(1), #data=500==
φ > 1
plt.figure(figsize=(12, 6))
phis = [1.04]
ar1_2 = create_ARdata(phis=phis)
plt.plot(ar1_2)
plt.show()
==AR(1), #data=500==
AR(2)
plt.figure(figsize=(12, 6))
phis = [0.1, 0.3]
ar2_1 = create_ARdata(phis=phis, N=100)
plt.plot(ar2_1)
plt.show()
==AR(2), #data=100==
plt.figure(figsize=(12, 6))
phis = [0.1, -1.11]
ar2_1 = create_ARdata(phis=phis)
plt.plot(ar2_1)
plt.show()
==AR(2), #data=500==
Estimate the autoregressive (AR) model
from statsmodels.tsa.ar_model import AutoReg
res = AutoReg(ar1_1, lags=1).fit()
out = "AIC: {0:0.3f}, HQIC: {1:0.3f}, BIC: {2:0.3f}"
print(out.format(res.aic, res.hqic, res.bic))
AIC: 231.486, HQIC: 236.445, BIC: 244.124
print(res.params)
print(res.sigma2)
res.summary()
[1.03832755 0.07236388]
0.09199676371696269
AutoReg Model ResultsDep. Variable: | y | No. Observations: | 500 |
---|
Model: | AutoReg(1) | Log Likelihood | -112.743 |
---|
Method: | Conditional MLE | S.D. of innovations | 0.303 |
---|
Date: | Sat, 13 Aug 2022 | AIC | 231.486 |
---|
Time: | 01:55:17 | BIC | 244.124 |
---|
Sample: | 1 | HQIC | 236.445 |
---|
| 500 | | |
---|
| coef | std err | z | P>|z| | [0.025 | 0.975] |
---|
const | 1.0383 | 0.052 | 20.059 | 0.000 | 0.937 | 1.140 |
---|
y.L1 | 0.0724 | 0.045 | 1.621 | 0.105 | -0.015 | 0.160 |
---|
Roots | Real | Imaginary | Modulus | Frequency |
---|
AR.1 | 13.8190 | +0.0000j | 13.8190 | 0.0000 |
---|